On Atkin and Swinnerton-dyer Congruence Relations (2)
نویسنده
چکیده
In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied by the coefficients of classical Hecke eigenforms. We also show that there is an automorphic L-function over Q whose local factors agree with those of the l-adic Scholl representations attached to the space of noncongruence cusp forms.
منابع مشابه
On Atkin and Swinnerton-dyer Congruence Relations (3)
In the previous two papers with the same title ([LLY05] by W.C. Li, L. Long, Z. Yang and [ALL05] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied special families of cuspforms for noncongruence arithmetic subgroups. It was found that the Fourier coefficients of these modular forms at infinity satisfy three-term Atkin and Swinnerton-Dyer congruence relations which are the p-adic anal...
متن کاملOn Atkin and Swinnerton - Dyer Congruence
In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied ...
متن کاملModular Forms on Noncongruence Subgroups and Atkin-Swinnerton-Dyer Relations
This is a joint project with Liqun Fang Ben Linowitz Andrew Rupinski Helena Verrill We give new examples of modular forms on noncongruence subgroups whose l-adic representations are modular and whose expansion coefficients satisfy Atkin-Swinnerton-Dyer congruences.
متن کاملThe Arithmetic Subgroups and Their Modular Forms
Arithmetic subgroups are finite index subgroups of the modular group. Classically, congruence arithmetic subgroups, which can be described by congruence relations, are playing important roles in group theory and modular forms. In reality, the majority of arithmetic subgroups are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences be...
متن کاملFinite Index Subgroups of the Modular Group and Their Modular Forms
Classically, congruence subgroups of the modular group, which can be described by congruence relations, play important roles in group theory and modular forms. In reality, the majority of finite index subgroups of the modular group are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences between congruence and noncongruence subgroups...
متن کامل